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Pseudo-valuation Rings, II.

DAVID F. ANDERSON - AYMAN BADAWI - DAVID E. DOBBS

Sunto. – Viene data una condizione sufficiente affinchè un sopra-anello di un anello
di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se (R , M) è un
PVR, allora ogni sopra-anello di R è un PVR se (e soltanto se) R[u] è quasi-locale
per ciascun elemento u di (M : M). Vari risultati sono dimostrati per un ideale pri-
mo di un anello commutativo arbitrario R, avente Z(R) come insieme di zero-divi-
sori. Per esempio, se P è un primo «forte» di R e contiene un elemento non-zero di-
visore di R, allora (P : P) è un sopra-anello di R con l’insieme degli ideali total-
mente ordinato e con ideale massimale P; inoltre, (P : P) è un PVR il cui ideale
massimale è un ideale primo anche in R se e soltanto se P e Z(R) sono entrambi
ideali primi «forti» di R. Se (R , M) è un PVR, viene dimostrato anche che Z(R)
può coincidere con nil (R) oppure con un ideale primo propriamente contenuto tra
questi due ideali.

1. – Introduction.

We assume throughout that all rings are commutative with 1 c 0. This pa-
per continues our study of pseudo-valuation rings (as introduced in [6]). We
begin by recalling some background material. As in [10], an integral domain R,
with quotient field K, is called a pseudo-valuation domain (PVD) in case each
prime ideal P of R is strongly prime, in the sense that xy�P , x�K , y�K im-
plies that either x�P or y�P . In [6], we generalized the study of pseudo-valu-
ation domains to the context of arbitrary rings (possibly with nonzero zerodivi-
sors). Recall from [6] that a prime ideal P of a ring R is said to be strongly
prime (in R) if aP and bR are comparable for all a, b�R . A ring R is called a
pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A
PVR is necessarily quasilocal [6, Lemma 1(b)]; a chained ring is a PVR [6,
Corollary 4]; an integral domain is a PVR if and only if it is a PVD (cf. [1,
Proposition 3.1], [2, Proposition 4.2], and [5, Proposition 3]); and if R is a PVR
whose maximal ideal M contains a non-zerodivisor, then V»4 (M : M) is a
chained ring with maximal ideal M [6, Theorem 8].

The following notation will be used throughout. Let R be a ring. Then Z(R)
denotes the set of zerodivisors of R, and nil (R) denotes the set of nilpotent
elements of R. Also, S»4R2Z(R) 4 ]x�RNx is a non-zerodivisor of R(, T4
RS is the total quotient ring of R, R8 denotes the integral closure of R in T, and
U(R) denotes the set of units of R. As usual, we say that a ring B is an overring
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of R if R%B%T; if I is an ideal of R, then (I : I) 4 ]x�TNxI%I( is an overring
of R and I 21 4 ]x�TNxI%R(; and (R , M) denotes that R is quasilocal with
maximal ideal M. Any unexplained material is as in [6], [12].

This paper is organized as follows. Section 2 develops a characterization of
the PVRs all of whose overrings are PVRs. Section 3 is devoted to a number of
results and examples concerning strongly prime ideals, with, as expected, in-
terplay with the PVR concept. Two typical results in this regard are the fol-
lowing part of Theorem 3.6: if a strongly prime ideal P contains a non-zerodivi-
sor, then (P : P) is a chained ring with maximal ideal P; and Corollary 3.13: if
P�Spec (R), then (P : P) is a PVR whose maximal ideal is in Spec (R) if and
only if P and Z(R) are both strongly prime ideals of R. Moreover, Example
3.16(c) shows that if (R , M) is a PVR, then Z(R) can be nil (R), M, or a prime
ideal properly contained between these two ideals.

2. – PVRs whose overrings are PVRs.

Our first result is a partial converse to the fact that PVRs are quasilo-
cal.

THEOREM 2.1. – Let (R , M) be a PVR and u�V2R . Then R[u] is a PVR if
and only if R[u] is quasilocal.

PROOF. – The «only if» assertion is immediate since a PVR is quasilocal [6,
Lemma 1(b)].

Conversely, suppose that R[u] is quasilocal. It suffices by [6, Theorem 7] to
show that M is the unique maximal ideal of R[u]. If u�U(R[u] ), then u11 �
U(R[u] ) 4U(R[u11] ) since R[u] is quasilocal, whence (u11)21 �R 8 by [12,
Theorem 15]. Hence (u11)21 �M since M is a proper ideal of R[u]. Since R 8
is a PVR with maximal ideal M by [6, Theorem 19], and (u11)21 �R 82M4
U(R 8 ), we have u11 �R 8 and u4 (u11)21 �R 8. On the other hand, if u�
U(R[u] ), then [12, Theorem 15] gives u 21 �R 8; as u 21 �M (since M is a prop-
er ideal of R[u] ), we have u 21 �R 82M4U(R 8 ). Thus, in both cases, u�R 8,
and so R[u] %R 8.

Consider v�R[u]2M . As v�R 82M4U(R 8 ), v 21 �R 8 and so, by [12,
Theorem 15], v 21 �R[v] %R[u]. In particular, v�U(R[u] ). Hence M is the
maximal ideal of R[u]. r

COROLLARY 2.2. – If (R , M) is a PVR, then the following conditions are
equivalent:

(1) R 84V4 (M : M) 4 ]x�TNxM%M(;

(2) Each overring of R is a PVR;
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(3) Each overring of R that does not contain an element of the form 1/s
for some s�M is a PVR;

(4) For each u�V2R , R[u] is a PVR;

(5) For each u�V2R , R[u] is quasilocal;

(6) Each overring of R is quasilocal.

PROOF. – (1) ` (2) by [6, Theorem 21]; (2) ¨ (3) trivially; and (3) ¨ (2) by
[6, Lemma 20 and Corollary 4]. Moreover, (2) ¨ (6) ¨ (5) trivially; and (5) ¨
(4) by Theorem 2.1. It suffices to prove that (4) ¨ (1). For this, note via the
proof of Theorem 2.1 that (4) implies that (M : M) %R 8, while [6, Lemma 17]
gives the reverse inclusion. r

EXAMPLE 2.3. – (a) Theorem 2.1 does not extend to overrings which are
generated by more than one element. In fact, if (R , M) is a PVD and A is a
quasilocal overring of R which is contained in (M : M), then A need not be a
PVD. For an example, consider R4Q1XQ(s , t)[ [X] ] 4Q1M , where s, t,
and X are indeterminates and M4XQ(s , t)[ [X] ]. Observe that A4
Q[s , t](s , t) 1M is a quasilocal overring of R which is contained in (M : M) 4
Q(s , t)[ [X] ], although A is not a PVD.

(b) Not all PVRs satisfy the equivalent conditions in Corollary 2.2. We
next illustrate this with an example in which R is an integrally closed PVD.
Let t and X be indeterminates and let V4Q(t)[ [X] ] 4Q(t)1M , where M4
XV . Then V is a valuation domain, and hence R4Q1M is a PVD with maxi-
mal ideal M and (M : M) 4V . However, R has an overring, namely R[t] 4
Q[t]1M , which is not quasilocal.

REMARK 2.4. – The equivalence of (5) and (6) in Corollary 2.2 has the follow-
ing counterpart for arbitrary rings. Let R be a ring with integral closure R 8,
and let M%R. Then (R 8 , M) is quasilocal ` for each u�R 8, (R[u], M) is
quasilocal ` each integral overring of R is quasilocal with unique maximal
ideal M. For a proof, note first via the incomparability and going-up properties
that if (R 8 , M) is quasilocal, then each integral overring of R is quasilocal with
unique maximal ideal M. On the other hand, suppose that (R[u], M) is quasilo-
cal for each u�R 8. Then if R has distinct maximal ideals M1 and M2 , pick v�
M1 2M2 and note, via the going-up property of R[v] %R 8, that M1 OR[v] and
M2 OR[v] are distinct maximal ideals of R[v], the desired contradiction.

3. – Strongly prime ideals.

We next study some properties of strongly prime ideals. Recall that
a strongly prime ideal of R is comparable under inclusion to each ideal
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of R [6, Lemma 1(a)], and hence, that Z(R) is a prime ideal if R is
a PVR.

LEMMA 3.1. – Let P be a strongly prime ideal of a ring R. Then

(a) P is comparable to Z(R).

(b) PS 8 is a strongly prime ideal of RS 8 for any multiplicative subset S 8 of
R disjoint from P.

(c) PP is a strongly prime ideal of RP and RP is a PVR.

(d) If P contains a non-zerodivisor of R, then PP 4P .

(e) Each prime ideal Q%P of R is strongly prime. Moreover, (P : P) %
(Q : Q).

PROOF. – (a) This is clear since Z(R) is a union of prime ideals of R [12, page
3] and a strongly prime ideal is comparable to each (prime) ideal of R [6, Lem-
ma 1(a)].

(b) This follows immediately from the definitions.

(c) By part (b) above, PP is a strongly prime ideal of RP , and hence RP is
a PVR [6, Theorem 2].

(d) By part (a) above, Z(R) %P , and hence RP %RS . Let p/s�PP with p�
P and s�R2P . Then P%sR by [6, Lemma 1(a)]; so p/s�PP OR4P . Hence
PP 4P.

(e) For the first assertion, just use the proof of [6, Theorem 2]. For the
«moreover» statement, we may assume that QcP . Let x� (P : P). Then xP%
P , and hence xQ%P%R . Then (xQ) P4 (xP) Q%Q yields xQ%Q since Q is
prime. Thus x� (Q : Q), and hence (P : P) % (Q : Q). r

We first concentrate on the case when P is a strongly prime ideal which
contains a non-zerodivisor of R. In this case, we show that R%RP % (P : P) %
P 21 %T; and that (P : P) 4P 21 if P is not principal (Theorem 3.6); and in
Corollary 3.7(b), we determine when RP 4 (P : P).

PROPOSITION 3.2. – Let P be a strongly prime ideal of a ring R which con-
tains a non-zerodivisor of R. Then

(a) R%RP % (P : P) %P 21 %T .

(b) P 21 cT .

PROOF (a) By Lemma 3.1(a), Z(R) %P , and hence RP%T . Thus we need
only show that RP % (P : P). This follows from Lemma 3.1(d) since RP %
(PP : PP ) 4 (P : P).
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(b) Let s�P be a non-zerodivisor. If P 21 4T , then 1 /s 2 �P 21 ; and
hence 1 /s4s(1 /s 2 ) �PP 21 %R , a contradiction. Thus P 21 cT . r

We next give another condition for a prime ideal to be strongly prime. This
generalizes [6, Theorem 5].

PROPOSITION 3.3. – Let P be a prime ideal of a ring R. Then

(a) Suppose that Z(R) %P . Then P is strongly prime if and only if for
every a , b�R , either bR%aR or aP%bP .

(b) Let P be a strongly prime ideal. If either P contains a non-zerodivi-
sor or P is a maximal ideal of R, then for every a , b�R , either bR%aR or
aP%bP .

PROOF. – (a) Suppose that P is strongly prime. Let a , b�R . If bR%aP ,
then bR%aR. So we may assume that aP%bR . If aP + bP , then ap4bc for
some p�P and c�R2P . Then c is a non-zerodivisor since Z(R) %P , and cNp
since P%cR by [6, Lemma 1(a)]. Hence aNb, and thus bR%aR .

Conversely, suppose that for every a , b�R, either bR%aR or aP%bP . Let
a , b�R . If aP%bP , then aP%bR . So we may assume that bR%aR . Then b4
ac for some c�R . If c�P , then bR%aP . Suppose that c�P . Then c is a non-
zerodivisor since Z(R) %P . Let 0 cp�P ; then bp4acp . We claim that cNp. If
not, then cP%pP by hypothesis. Hence cp4pq for some q�P . Thus p(c2q) 4
0, and hence c2q�Z(R) %P . Thus c�P , a contradiction. Hence cNp for each
p�P , and thus P%cR . Hence aP%acR4bR . Thus P is strongly prime.

(b) In either case, Z(R) %P by Lemma 3.1(a). Thus part (b) follows from
part (a) above. r

Recall from [6] that an ideal I of a ring R satisfies property (˜) if whenev-
er xy�I for some x , y�T , then either x�I or y�I . It was shown [6, Theorem
14] that if (R , M) is a PVR, then M satisfies property (˜). The following
proposition is a generalization of that fact.

PROPOSITION 3.4. – Let P be a strongly prime ideal of a ring R. If P contains
a non-zerodivisor of R, then P satisfies property (˜).

PROOF. – By parts (c) and (d) of Lemma 3.1 and Proposition 3.2(a), RP is a
PVR with maximal ideal PP 4P and total quotient ring T. Thus P satisfies
property (˜) by [6, Theorem 14]. r

For our next result, cf. [10, Proposition 1.2] and [6, Lemma 13].

PROPOSITION 3.5. – Let P be a strongly prime ideal of a ring R which con-
tains a non-zerodivisor of R. Then
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(a) T2R%U(T).

(b) If x�T2R , then x 21 P%P .

PROOF. – (a) Let x4a/b�T2R , where a�R and b�R2Z(R). Suppose
that a�Z(R). Since P is strongly prime, aR and bP are comparable. If aR%
bP , then x�P%R , a contradiction. Thus bP%aR%Z(R), and hence b�Z(R)
since P contains a non-zerodivisor, again a contradiction. Thus a�Z(R); so
x 21 4b/a�T, and thus x�U(T).

(b) We have x(x 21 P) 4P ; so x 21 P%P since P satisfies property (˜) by
Proposition 3.4. r

Recall that a ring R is a chained ring if its ideals are linearly ordered by
inclusion (i.e., for every x , y�R , either xNy or yNx). Any chained ring is neces-
sarily a PVR [6, Corollary 4]. The following result is motivated by [2, Proposi-
tion 4.3] and [4, Proposition 5].

THEOREM 3.6. – Let P be a strongly prime ideal of a ring R which contains a
non-zerodivisor of R. Then (P : P) is a chained ring with maximal ideal P.
Moreover, if P is nonprincipal, then (P : P) 4P 21 ; and if P is principal, then
(P : P) 4R .

PROOF. – By parts (c) and (d) of Lemma 3.1, RP is a PVR with maximal ideal
PP 4P. Since P contains a non-zerodivisor, (P : P) 4 (PP : PP ) is a chained ring
with maximal ideal PP 4P by [6, Theorem 8].

For the «moreover» statement, first suppose that P is not principal. Let
x�P 21 2 (P : P). Then x 21 �T by Proposition 3.5(a), and hence P%x 21 R .
Since x 21 (xP) 4P and x� (P : P), we have x 21 �P since P satisfies property
(˜) by Proposition 3.4. Thus P4x 21 R , a contradiction. Hence (P : P) 4P 21.
If P is principal, then P4sR for some non-zerodivisor s�P . Thus (P : P) 4
(sR : sR) 4R. r

COROLLARY 3.7. – Let P be a strongly prime ideal of a ring R. Then

(a) If P contains a non-zerodivisor prime p of R, then P is maximal, P4
pR , and R is a chained ring (and thus a PVR).

(b) Suppose that P contains a non-zerodivisor of R. Then RP 4 (P : P) if
and only if RP is a chained ring.

(c) Let Q be a prime ideal of R properly contained in P. If Q contains a
non-zerodivisor of R, then Q is strongly prime and RQ 4 (Q : Q).

PROOF. – (a) Let y�R . Suppose that y�pR . Then pP%yP by Proposition
3.3(b). Hence p 2 4ym for some m�R . Since p 2 =y and p is a non-zerodivisor
prime of R, p 2 Nm. Hence m4p 2 k for some k�R . Thus p 2 4yp 2 k , and hence
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yk41. Thus y�U(R). Hence P is maximal, P4pR , and R is a PVR. Thus R4
(P : P) is a chained ring by Theorem 3.6.

(b) If RP 4 (P : P), then RP is a chained ring by Theorem 3.6. Converse-
ly, suppose that RP is a chained ring. Then RP % (P : P) by Proposition 3.2(a).
Let x� (P : P). We may assume that x�P , and hence x is a unit of (P : P).
Thus either x or x 21 is in RP since RP is a chained ring. If x 21 �RP , then x 21 �
RP 2P, and hence x4 (x 21 )21 �RP . Thus RP4 (P : P).

(c) By Lemma 3.1(e) and Theorem 3.6, (P : P) % (Q : Q) are chained rings
with maximal ideals P and Q, respectively. Thus RQ 4 (RP )QP

4 (P : P)QP
is a

chained ring by [6, Theorem 12]; so RQ 4 (Q : Q) by part (b) above. r

The next result is motivated by [2, Proposition 4.6].

THEOREM 3.8. – The following statements are equivalent for a proper ideal
I of a ring R which contains a non-zerodivisor of R:

(1) I is a nonprincipal strongly prime ideal of R.

(2) I 21 is a ring and for every a , b�R , the ideals aI and bR are
comparable.

PROOF. – (1) ¨ (2): This is clear by the definition of strongly prime ideal
and Theorem 3.6.

(2) ¨ (1): Let s�I be a non-zerodivisor of R. The proof of Proposition
3.2(b) shows that I is not principal. We need only show that I is prime. Since
s�I is a non-zerodivisor and for every a , b�R , the ideals aI and bR are com-
parable, Z(R) %I. Suppose that xy�I for some x , y�R2I . Hence I%xR and
I%yR by hypothesis. Since x , y�R2I and Z(R) %I , both x and y are non-ze-
rodivisors. Thus 1/x, 1 /y�I 21, and hence 1 /(xy)2�I 21 since I 21 is a ring.
Thus 1 /xy4xy/(xy)2 �II 21 %R, a contradiction. Hence I is prime. r

We have the following partial converse to Theorem 3.6.

THEOREM 3.9. – Let P be a prime ideal of a ring R such that B4 (P : P) is a
PVR with maximal ideal M�Spec (R). Then

(a) Z(R) %M .

(b) M , P , and Z(R) are strongly prime ideals of R.

In particular, if (P : P) is a PVR with maximal ideal P, then P is a strongly
prime ideal of R and Z(R) %P .

PROOF. – (a) Let x�R2M . Then x�U(B). Thus x�Z(R), so Z(R) %M .

(b) Let a , b�R . Since M is a strongly prime ideal of B, the ideals bB
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and aM are comparable. If bB%aM , then bR%aM . Thus we may assume that
aM%bB . If aM + bR , then am4bd for some m�M and d�B2R . Thus d�
U(B), and hence b4a(d 21 m) �aM . Thus bR%aM , and hence M is a strongly
prime ideal of R. Since P%M , P is also a strongly prime ideal of R by Lemma
3.1(e). Since Z(R) %M and the prime ideals of R contained in M are strongly
prime and linearly ordered, Z(R) is a prime ideal of R. Hence Z(R) is a strong-
ly prime ideal of R by Lemma 3.1(e).

The «in particular» statement is immediate. r

We next consider the case when the strongly prime ideal P does not con-
tain a non-zerodivisor, i.e., when P%Z(R). For this case, the next result is
analogous to Proposition 3.2.

PROPOSITION 3.10. – Let P be a strongly prime ideal of a ring R such that
P%Z(R). Then

(a) PS 4P .

(b) (P : P) 4T .

(c) P4PS is a strongly prime ideal of RS 4T4 (P : P).

PROOF. – Let s�S . Then P%sR by [6, Lemma 1(a)], and hence (1 /s) P%R .
Thus s( (1 /s) P) %P , s�P , and P a prime ideal yields (1 /s) P%P . Hence PS 4P
and (P : P) 4T . That PS is strongly prime follows from Lemma 3.1(b). r

THEOREM 3.11. – Let P be a prime ideal of a ring R such that P%Z(R).
Then

(a) T is a PVR if and only if Z(R)S is a strongly prime ideal of T.

(b) (P : P) is a PVR with maximal ideal M�Spec (R) if and only if Z(R)
is a strongly prime ideal of R.

(c) If (P : P) is a PVR with maximal ideal M�Spec (R), then (P : P) 4T ,
P is a strongly prime ideal of R, and M4Z(R).

PROOF. – Let Q»4Z(R).

(a) If T is a PVR, then T4RS is quasilocal, necessarily with maximal
ideal QS . Conversely, if QS is a strongly prime ideal of T, then T is a PVR by [6,
Theorem 2].

(b) If Q is a strongly prime ideal of R, then T4RS is a PVR with maxi-
mal ideal Q4QS by Lemma 3.1(c) and Proposition 3.10(a). Thus P%Q is also a
strongly prime ideal of R by Lemma 3.1(e); so (P : P) 4T by Proposition
3.10(b). The converse follows from Theorem 3.9(b).
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(c) Suppose that (P : P) is a PVR with maximal ideal M�Spec (R). Then
P is a strongly prime ideal of R by Theorem 3.9(b), and hence (P : P) 4T by
Proposition 3.10(b). By part (a) above, necessarily M4QS 4QS OR4
Q . r

The next two corollaries summarize our earlier results on when (P : P) is a
PVR.

COROLLARY 3.12. – Let P be a prime ideal of a ring R. If (P : P) is a PVR
with maximal ideal M�Spec (R), then P and Z(R) are strongly prime ideals of
R and either M4P or M4Z(R).

PROOF. – By Theorem 3.9(b), M, P, and Z(R) are strongly prime ideals of R.
Thus either Z(R) %P or P%Z(R) by Lemma 3.1(b). If P%Z(R), then M4Z(R)
by Theorem 3.11(c). If Z(R) is properly contained in P(%M), then M4P by
Theorem 3.6. r

COROLLARY 3.13. – Let P be a prime ideal of a ring R. Then the following
statements are equivalent:

(1) (P : P) is a PVR with maximal ideal M�Spec (R);

(2) P and Z(R) are strongly prime ideals of R.

PROOF. – (1) ¨ (2) by Theorem 3.9(b).
(2) ¨ (1): By Lemma 3.1(a), P and Z(R) are comparable. If P%Z(R), then

we are done by Theorem 3.11(b). If Z(R) is properly contained in P, then we
are done by Theorem 3.6. r

QUESTION 3.14. – Let P be a strongly prime ideal of a ring R such that P%
Z(R) and (P : P) (4T) is a PVR. Then T has maximal ideal Z(R)S and Z(R) is a
prime ideal of R. Is Z(R) also a strongly prime ideal of R?

Any PVD which is not a field gives an example of a PVR (R , M) for which
nil (R) 4Z(R) cM. In [6, Example 10(b)], we constructed a PVR (R , M) with
nil (R) cZ(R) 4M . These examples raise the question whether there exists a
PVR (R , M) for which nil (R) is neither Z(R) nor M. In Example 3.16(c), we
show that such behavior is possible. In the next proposition, we give a necess-
ary and sufficient condition for certain rings R to have nil (R) 4Z(R).

PROPOSITION 3.15. – Let R be a ring such that either R is quasilocal or
nil (R) is a (minimal) prime ideal of R. Then Z(R) 4nil (R) if and only if for
every x�Z(R) there exists an integer kF1 such that x k R4x k11 R .

PROOF. – We need only prove the «if» assertion. Suppose that there is an
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x�Z(R)2nil (R). Then x k 4x k11 m for some m�R and some integer kF1.
Hence x k (12xm) 40 �nil (R). If nil (R) is prime, then 12xm�nil (R) since
x�nil (R). Hence xm412 (12xm) �U(R), and thus x�U(R), a contradic-
tion. If R is quasilocal with maximal ideal M, then x�M , and hence 12xm�
U(R). Thus x k 40, so x�nil (R), again a contradiction. Thus Z(R) 4
nil (R). r

We end the paper with several examples. In particular, Example 3.16(c)
shows that if R is a PVR with maximal ideal M, then Z(R) can be nil (R), M, or
a prime ideal properly contained between these two ideals.

EXAMPLE 3.16. – (a) ([6, Example 10(a)]) Let k be a field and X and Y inde-
terminates. Then R4k[X , Y] /(X 2 , XY , Y 2 ) 4k[x , y] is a zero-dimensional
PVR with (strongly prime) maximal ideal M4Z(R) 4 (x , y), and (M : M) 4R
is not a chained ring. Thus the non-zerodivisor hypothesis is needed in Theo-
rem 3.6.

(b) Let W be a valuation domain with maximal ideal N. For any 0 cx�
N , R4W/xW is a PVR [6, Corollary 3] with maximal ideal M4Z(R) 4N/xW
and nil (R) 4Q/xW , where Q4kxW is the (unique) prime ideal of W minimal
over xW . To see that Z(R) 4N/xW , observe that for any m�N2xW , then
x4rm for some r�xW , and hence (r1xW)(m1xW) 40 in W/xW with r1
xW nonzero. This example generalizes [6, Example 10(b)].

(c) Let W be a valuation domain with maximal ideal N and let 0 cx�N .
Then by part (b) above, W *4W/xW is a chained ring with maximal ideal
N *4N/xW4Z(W *), nil (W *) 4kxW/xW , and residue field k4W * /N *4
W/N . Let p : W *Kk be the natural surjection, let D be a valuation domain
with maximal ideal P and quotient field k, and let R4p21 (D). Then R is a
chained ring with maximal ideal M4p21 (P) &N *, nil (R) 4nil (W *), and
Z(R) 4Z(W *) 4N *. (Also note that R4m21 (D) /xW , where m : WKk is the
natural surjection; so m21 (D) %W is a valuation domain.)

By standard gluing techniques (cf. [9, Corollary 1.5]), Spec (R) is order-iso-
morphic to the result of gluing Spec (D) «above» Spec (W*), where 0 in
Spec (D) is identified with N* in Spec (W*). Thus for any integers i and n with
1 G iGn , there is an (n21)-dimensional chained ring (R , M) with distinct
prime ideals nil (R) 4M1 %M2 %R%Mn 4M such that Z(R) 4Mi .

More generally, let (I , G) be any set which can be realized as the spectrum
of some valuation domain (i.e., by [13, Corollary 3.6], I is linearly ordered and
satisfies properties (K1) and (K2) (cf. [12, pages 6-7])). Let m be the minimum
element of I, L the maximum element of I, and i�I with mG iGL . By the
above construction, there is a chained ring (and hence a PVR) (R , M) with
Spec (R) order-isomorphic to I, where nil (R) D m , Z(R) D i , and M D L .
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